

Laboratory abnormalities associated with COVID-19

Compiled by Dr H van Deventer

2nd Quarter 2020

Introduction

Coronavirus disease 2019 (COVID-19), a form of respiratory and systemic zoonosis caused by a virus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), belonging to the *Coronaviridae* family. It has been highlighted that laboratory medicine plays an essential role in the early detection, diagnosis and management of COVID-19. With patients now being admitted with COVID-19, laboratory medicine also plays an important role in assessing disease severity, prognostication and therapeutic monitoring. The aim of this article is to provide a brief overview on the most frequent laboratory abnormalities encountered in patients with COVID-19 infection.

Virus particles spread through the respiratory mucosa, initially using the angiotensin converting enzyme 2 (ACE-2) receptor at ciliated bronchial epithelial cells, and then infect other cells. This induces a cytokine storm in the body and generates a series of immune responses, that cause changes in peripheral white blood cells and immune cells such as lymphocytes.

With regards to complications and death, a third of patients presented with acute respiratory distress syndrome (ARDS), but also, albeit in a lower frequency, acute cardiac injury, acute kidney injury, and shock, eventually followed by multiple organ failure. Therefore, early identification and timely treatment of critical cases is of crucial importance.¹

Pathophysiology: Immune dysregulation

Damage to lymphocytes, including T lymphocytes by SARS-CoV-2 leads to lymphopaenia, predisposing to secondary bacterial infections and exacerbating severity. An increase in levels of pro-inflammatory cytokines, and decrease in anti-inflammatory cytokines may indicate T cell mediated response against SARS-CoV-2 resulting in a cytokine storm that causes hyperinflammation. Upregulation of pro-inflammatory cytokines in serum was found associated with severe pulmonary damage and inflammation.

Pathophysiology: Kidney Injury

ACE-2 serves as a receptor for SARS-CoV-2. SARS-CoV-2 can bind to renal epithelial cells, injure these cells, and subsequently disrupt whole body fluid, acid-base, and electrolyte homeostasis.² Postmortem evaluations demonstrated severe acute tubular injury, prominent lymphocyte infiltration, detection of viral antigen in tubular epithelial cells, macrophage infiltration, and complement C5b-9 deposition. The lymphocyte and immune cell infiltration found in COVID-19-induced acute kidney injury (AKI) is likely an important pathophysiologic factor.³ The associated high mortality from AKI may be due to deleterious lung-kidney crosstalk during COVID-19 infection and augmentation of inflammation during AKI.⁴

Pathophysiology: Liver Injury

Available data supports a higher prevalence of abnormal aminotransferase levels in severe COVID-19, but clinically significant liver injury is uncommon. Elevation in liver enzymes may be from hepatic damage from immune interactions involving intrahepatic cytotoxic T cells and Kupffer cells. Drug-induced liver injury may also be a possible contributing factor to the observed abnormal liver function.⁵

Table 1. Laboratory abnormalities noted in patients with COVID-19

Laboratory Abnormalities	Potential Clinical Significance		
Increased white cell count	2-fold increase in patients requiring ICU admission ⁶		
Increased neutrophil count	4.4-fold increase in patients requiring ICU admission ⁶		
Decreased lymphocyte count	0.4-fold, i.e. decreased in patients requiring ICU admission ⁶		
Decreased platelets	Indication of consumption (disseminated) coagulopathy		
Increased ESR			
Increased D-dimer	Activation of blood coagulation and/or disseminated coagulopathy – 4.8-fold increase in patients requiring ICU admission ⁶		
Increased CRP	Viral infection/sepsis		
Increased PCT	Bacterial (super)infection		
Increased IL-6	Cytokine storm		
Increased ferritin	Cytokine storm		
Increased lactate dehydrogenase (LDH)	Pulmonary injury and/or widespread organ damage		
Increased cardiac troponin	Cardiac injury		
Increased NT pro-BNP	Cardiac injury		
Increased creatinine	Renal injury		
Increased aminotransferases (ALT/AST)	Liver injury and/or widespread organ damage		
Decreased albumin	Impairment of liver function		

Prognostication and predicting ICU admission

Early identification and timely treatment of critical cases is of crucial importance.⁷ Several significant differences were noted between patients who needed admission to the intensive care unit (ICU) and those who did not. In a study published by Huang and colleagues involving 140 COVID-19 patients (13 with severe disease), some significant predictors of ICU admission were leukocytosis (2.0-fold increased in ICU patients), neutrophilia (4.4-fold increased), lymphopaenia (0.4-fold, i.e. decreased), D-dimer (4.8-fold increased), LDH (1.4-fold increased) and procalcitonin, whose values were increased in 25% of patients who were admitted to the ICU compared with 0% who were not (p = 0.029).⁶ Fan et al found that admission lymphopaenia and increased LDH stood out as discriminating laboratory indices with a P value of < 0.001 and 0.005, respectively. They also noted a down trending LDH as patients' clinical condition improved.⁸ In a study published by Zhou et al the median time from illness onset to invasive mechanical ventilation was 14.5 days (12.0 – 19.0).⁹

Predicting mortality

In the study by Wang et al white blood cell counts, neutrophil counts and D-dimer were higher in nonsurvivors than those in survivors. As disease progressed and clinical status deteriorated, the levels of serum urea and creatinine progressively increased before death.¹⁰ Tang and colleagues followed 183 patients with confirmed COVID-19 infection during their hospital stay, and found that coagulation parameters were more frequently deranged in those who died (n = 21) than in those who survived – 71% of patients who died fulfilled the criteria for diagnosing disseminated intravascular coagulation (DIC) compared to only 0.6% of those who survived.¹¹

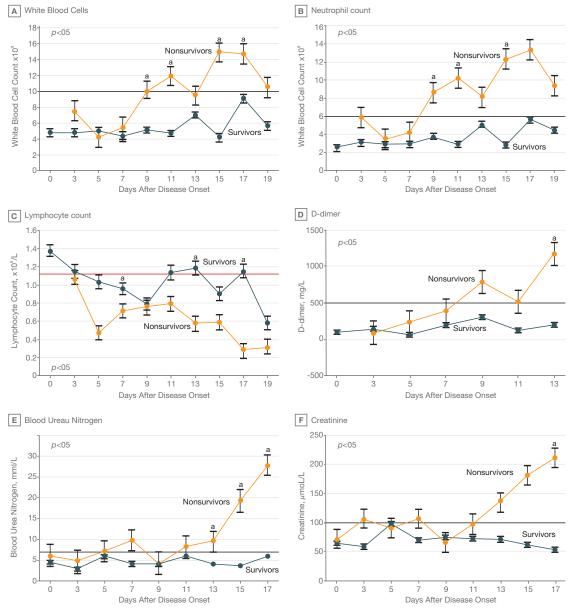


Figure 1. Laboratory parameters in 33 patients with COVID-19 (Reference 10)

D-dimer

Endothelial damage and subsequent clotting is common in severe and critical patients with COVID-19. In one study, patients with a D-dimer level over 1 μ g/L at admission had increased mortality.⁹

Procalcitonin

Procalcitonin (PCT) typically remains within the reference range in patients with uncomplicated SARS-CoV-2 infection,¹² and PCT does not appear substantially altered in patients with COVID-19 at admission. The progressive increase of its value seemingly mirrors a worse prognosis. This is not unexpected, whereby serum procalcitonin levels are typically normal in patients with viral infections (or viral sepsis), whilst its gradual increase probably mirrors bacterial superinfection.¹³ Serial procalcitonin measurement may play a role in predicting evolution towards a more severe form of disease.¹²

Lactate dehydrogenase

Lactate dehydrogenase (LDH) is an enzyme present in essentially all major organs. It has previously been shown that elevated LDH may indicate lung damage.¹⁴

Neutrophilia and lymphopaenia

Neutrophilia may be related to cytokine storm induced by virus invasion.¹⁰ Lymphocytes in most patients with COVID-19 are reduced.^{7,15} This suggests that COVID-19 mainly acts on lymphocytes, especially T lymphocytes, as does the related virus SARS-CoV. Damage to T lymphocytes might be an important factor leading to exacerbation of disease.⁹ In a study by Qin and colleagues, an increased neutrophil-to-lymphocyte ratio (NLR) was found in the severe group of patients with COVID-19 compared to the mild group.¹⁶ An increased NLR has been shown to be an early indicator of severe illness.¹⁷ Patients with age \geq 50 years and NLR \geq 3.13 progressed to severe illness, and they should rapidly access intensive care units if necessary.

IL-6

Higher serum levels of pro-inflammatory cytokines (TNF- α , IL-1 and IL-6) and chemokines (IL-8) are found in patients with severe COVID-19 compared to individuals with mild disease, similar to the results seen during the SARS and MERS outbreaks.¹⁶ Serum COVID-19 viral load (RNAaemia) is strongly associated with cytokine storm. Chen et al found inflammatory cytokine IL-6 levels to be significantly elevated in critically ill patients, with values almost 10-fold higher in critically ill patients. More importantly, the extremely high IL-6 level was closely correlated with COVID-19 viral load (R = 0.902).

Secondary haemophagocytic lymphohistiocytosis is a hyperinflammatory syndrome characterised by a fulminant and fatal hypercytokinaemia with multi-organ failure. As during previous pandemics associated with coronaviruses (Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome), corticosteroids are not routinely recommended and might exacerbate COVID-19-associated lung injury. However, in hyperinflammation, immunosuppression may be beneficial.¹⁸

Lancet Laboratories offers testing for IL-6, which is performed on an SST sample.

Conclusion

The care of patients with COVID-19 entails early identification, rapid isolation, timely establishment of infection prevention and control measures, together with symptomatic care for patients with mild disease and supportive treatment for those with severe COVID-19. Laboratory tests play an important role in the diagnosis, risk stratification, prognosis and therapeutic monitoring of patients with COVID-19.

References

- 1. Rodriguez-Morales AJ, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020: 101623. doi:10.1016/j.tmaid.2020.101623.
- 2. Rabb H. Kidney diseases in the time of COVID-19: Major challenges to patient care. J Clin Invest 2020: 138871. doi: 10.1172/JCI138871.
- 3. Rabb H, et al. Pathophysiological role of T lymphocytes in renal ischemia-reperfusion injury in mice. Am J Physiol Renal Physiol 2000; 279(3): F525 F531.
- 4. Kramer AA, et al. Renal ischemia/reperfusion leads to macrophage-mediated increase in pulmonary vascular permeability. Kidney Int 1999; 55(6): 2362 2367.
- 5. Bangash MN, Patel J, and Parekh D. COVID-19 and the liver: little cause for concern. Lancet Gastroenterol Hepatol 2020; S2468-1253(20)30084-4. doi: 10.1016/S2468-1253(20)30084-4.
- 6. Huang C, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497 506.
- 7. Chen N, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395(10223): 507 513.
- 8. Fan BE, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol 2020. doi: 10.1002/ajh.25774.
- 9. Zhou F, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395(10229): 1054 1062.
- 10. Wang D, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020: e201585. doi: 10.1001/jama.2020.1585.
- 11. Tang N, et al. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844 847.
- 12. Lippi G and Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta 2020; 505: 190 191.
- 13. Lippi G. Sepsis biomarkers: past, present and future. Clin Chem Lab Med 2019; 57(9): 1281 1283.
- 14. McFadden RG and Oliphant LD. Serum lactate dehydrogenase in interstitial lung disease. Chest 1991; 100(4): 1182.
- 15. Liu WJ, et al. T-cell immunity of SARS-CoV: Implications for vaccine development against MERSCoV. Antiviral Res 2017; 137: 82 - 92.
- 16. Qin C, et al. Dysregulation of immune response in patients with COVID-19 in Wuhan, China. Clin Infect Dis, 2020: ciaa248. doi: 10.1093/cid/ciaa248.
- 17. Lagunas-Rangel FA. Neutrophil-to-Lymphocyte ratio and Lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. J Med Virol 2020. doi: 10.1002/jmv.25819.
- 18. Mehta P, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033 1034.

Johannesbur	rg (011) 358 0800	Polokwane	(015) 294 0400	Cape Town (021) 673 1700 Welkom (057)	355 9003
Pretoria	(012) 483 0100	Rustenburg	(014) 597 8500	Bloemfontein (051) 410 1700	
Durban	(031) 308 6500	Nelspruit	(013) 745 9000	Kimberley (053) 836 4460	
0861 LANC	ET (526238) 🛛 🗐 www	.lancet.co.za	LancetLabSouthAfrica	LancetLab_ZA 🞯 lancetlab_za	Google play

design done and printed by: 🕮 ELECTRONIC LABORATORY SERVICES (PTY) LTD PRINT BUREAU

corporate branding/newsletters/south africa/2020/n00203 laboratory abnormalities associated with covid-19 a3 eng duplex 170gsm leo apr2020.cdr | rev000